在期权交易中如何利用希腊值?

原文链接

Greeks值在实际应用中指代的意义

对于期权交易者而言,熟悉Delta、Gamma、Theta、Vega等的希腊值(Greeks值)的特征及性质是非常重要的,无论在交易策略制定上,还是在风险管理上。可以说,了解这些Greeks值在实际应用中指代的意义,以及如何在实际交易过程中加以应用,是一个合格交易员必须掌握的知识与技能。

1.1、Delta指代意义

Delta(Δ)代表标的标的物价格变动对看涨期权价格变动的敏感度,在实际应用过程中,该指标还具备以下功能。

(1)风险资产对冲计量的依据。如果Δ=0.22,出售1单位看涨期权需要买入22(=0.22×100)股的标的股来对冲风险。又例如,如果Δ=-0.6,出售1单位看跌期权需要卖出60股来对冲风险。

(2)在到期时看涨期权是实值的概率。如果Δ=0.6,该看涨期权到期时,成为实值的概率为60%,投资者有60%的机会获利(若其他情况不变)。

(3)风险警示界限。就限界期权(敲入或敲出期权)而言,当标的物价格接近限界(或关卡)时,其Delta经常超过1,也可能变为很大(比如Δ=3),这会被风险管理经理认为该期权的风险已是标的股的3倍,并要求交易员减仓,降低期权的风险。

另外,需要说明的是,虽然理论告诉我们,Delta对冲风险必须是连续性的进行。但在实务操作时,连续对冲将产生较高的交易费用,故需采用离散式的对冲(discrete hedging)风险。这样交易成本会下降,但同时对冲风险的效率也下降,故在实际过程中,需要在“对冲误差”、“交易成本”二者之间进行权衡与取舍。

1.2、Gamma指代意义

看涨期权的Gamma(Γ)是看涨期权价格的二阶导数(也是看涨期权Delta的一阶导数),该指标在实际应用过程中还具备以下指代作用:

(1)Delta敏感性因子。它代表了看涨期权价格曲线在给定价格点的曲率。它是Delta关于标的物价格变化的敏感性。Gamma越大,看涨期权价格越敏感,即表示该看涨期权在该给定标的物价格的风险越大。其中,平值期权的凸形风险最高,越是实值(或虚值)期权的凸形风险越低。此时,标的物价格变动对期权价格影响很小。所以,买入的期权处于平值附近时,当标的物价格上行的幅度较大时,投资者获利较多,而卖方则对应的亏损就较高。

(2)Delta-Gamma中性对冲因子。一方面,若要对冲Gamma风险,可以用另外的期权去对冲。例如,两个豆粕期货期权的GammaΓ1、GammaΓ2,二者存在这样的关系GammaΓ1/GammaΓ2=0.40/0.20=2。所以,要对冲第1个期权的Gamma风险,需要买(或卖)2手的第2个期权来对冲。另一方面,若只对冲Gamma风险会扭曲组合的Delta风险的对冲,所以在实际应用中,最好采用Delta-Gamma中性对冲方法。这就需要采用两种期权,并求解出一个二元方程的解,计算出两种期权的具体手数,这样才能做到对冲原来期权的Delta-Gamma风险。这种方法对冲效果较为理想,不过因采用两种期权对冲风险,其成本可能比较高。

1.3、Vega指代意义

Vega风险可以由每1%的波动率变化所引起的期权价格百分比的变化来衡量。在实际应用过程中,它还具备以下作用:

(1)波动率与期权价值之间纽带。布莱克-斯科尔斯定价模型假设的标的物价格波动率在期权有效期限内是固定的,但实际上波动率会随着标的物价格和时间而变化,当然也会因为宏观经济因素等外在因素的变动而造成波动率的变动。所以,Vega值帮助我们知道,当标的股波动率变动时,会造成期权价值多少百分比的变动。

(2)风险度量的因子。Vega代表的是期权价格随着标的股波动率变化而变化的敏感性。Vega越高,期权价格的变化越大,因此会导致由更高波动率变化所引起的更大的期权风险,即Vega风险。

1.4、Theta指代意义

时间衰减因子(time decay factor),是指随时间流逝期权价值的下降速度。在其他条件相同的情况下,Theta值通常表示为期权价值每日下降的点数。例如,在实际应用过程中,Theta值为0.05的期权的价值在其他市场条件不变时,每一天下降0.05。如果该期权今日价值为2.75,那么明天它将价值2.70,后天它将价值2.65。无论看涨期权或看跌期权,所有期权的价值都会因到期时间的临近而下降。

原文链接

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s